Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38558982

RESUMO

Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic ligand enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.

2.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
3.
Proc Natl Acad Sci U S A ; 121(12): e2310866121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483996

RESUMO

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.


Assuntos
Antígenos de Histocompatibilidade Classe II , Linfócitos T , Animais , Humanos , Camundongos , Dimerização , Fibrinogênio/metabolismo , Ligantes , Mutação
4.
Res Sq ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36824869

RESUMO

Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.

6.
Res Sq ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37886518

RESUMO

The vaccine elicitation of HIV-neutralizing antibodies with tier-2-neutralization breadth has been a challenge. Here, we report the isolation and characteristics of a CD4-binding site specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent gp120 DNA prime-protein boost vaccine. HmAb64 derived from heavy chain variable germline gene IGHV1-18, light chain germline gene IGKV1-39, and had a 3rd heavy chain complementarity determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 21 (10%), including tier-2 neutralization resistant strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 bound to a conformation between prefusion closed and occluded open forms of envelope trimer, using both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4-binding site. A gp120 subunit-based vaccine can thus elicit an antibody capable of tier 2-HIV neutralization.

7.
Front Immunol ; 14: 1271686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854587

RESUMO

Introduction: Neutralizing antibodies (Abs) are one of the immune components required to protect against viral infections. However, developing vaccines capable of eliciting neutralizing Abs effective against a broad array of HIV-1 isolates has been an arduous challenge. Objective: This study sought to test vaccines aimed to induce Abs against neutralizing epitopes at the V1V2 apex of HIV-1 envelope (Env). Methods: Four groups of rabbits received a DNA vaccine expressing the V1V2 domain of the CRF01_AE A244 strain on a trimeric 2J9C scaffold (V1V2-2J9C) along with a protein vaccine consisting of an uncleaved prefusion-optimized A244 Env trimer with V3 truncation (UFO-BG.ΔV3) or a V1V2-2J9C protein and their respective immune complexes (ICs). These IC vaccines were made using 2158, a V1V2-specific monoclonal Ab (mAb), which binds the V2i epitope in the underbelly region of V1V2 while allosterically promoting the binding of broadly neutralizing mAb PG9 to its V2 apex epitope in vitro. Results: Rabbit groups immunized with the DNA vaccine and uncomplexed or complexed UFO-BG.ΔV3 proteins (DNA/UFO-UC or IC) displayed similar profiles of Env- and V1V2-binding Abs but differed from the rabbits receiving the DNA vaccine and uncomplexed or complexed V1V2-2J9C proteins (DNA/V1V2-UC or IC), which generated more cross-reactive V1V2 Abs without detectable binding to gp120 or gp140 Env. Notably, the DNA/UFO-UC vaccine elicited neutralizing Abs against some heterologous tier 1 and tier 2 viruses from different clades, albeit at low titers and only in a fraction of animals, whereas the DNA/V1V2-UC or IC vaccines did not. In comparison with the DNA/UFO-UC group, the DNA/UFO-IC group showed a trend of higher neutralization against TH023.6 and a greater potency of V1V2-specific Ab-dependent cellular phagocytosis (ADCP) but failed to neutralize heterologous viruses. Conclusion: These data demonstrate the capacity of V1V2-2J9C-encoding DNA vaccine in combination with UFO-BG.ΔV3, but not V1V2-2J9C, protein vaccines, to elicit homologous and heterologous neutralizing activities in rabbits. The elicitation of neutralizing and ADCP activities was modulated by delivery of UFO-BG.ΔV3 complexed with V2i mAb 2158.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vacinas de DNA , Animais , Coelhos , Anticorpos Anti-HIV , Complexo Antígeno-Anticorpo , Vacinação , Anticorpos Neutralizantes , Epitopos , DNA
8.
Biomolecules ; 13(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509124

RESUMO

Developing a safe and effective preventive for HIV-1 remains the hope for controlling the global AIDS epidemic. Recently, mRNA vaccines have emerged as a promising alternative to conventional vaccine approaches, primarily due to their rapid development and potential for low-cost manufacture. Despite the advantages of mRNA vaccines, challenges remain, especially due to the adverse effects of the delivery vehicle and low delivery efficiency. As a result, Luna Labs is developing a short carbon nanotube-based delivery platform (NanoVac) that can co-deliver mRNA and HIV-1 glycoproteins to the immune system efficiently with negligible toxicity. Surface chemistries of NanoVac were optimized to guide antigen/mRNA loading density and presentation. Multiple formulations were engineered for compatibility with both intramuscular and intranasal administration. NanoVac candidates demonstrated immunogenicity in rabbits and generated human-derived humoral and cellular responses in humanized mice (HIS). Briefly, 33% of the HIV-1-infected HIS mice vaccinated with NanoVac-mRNA was cleared of virus infection by 8-weeks post-infection. Finally, NanoVac stabilized the loaded mRNA against degradation under refrigeration for at least three months, reducing the cold chain burden for vaccine deployment.


Assuntos
Vacinas contra a AIDS , HIV-1 , Nanotubos de Carbono , Humanos , Animais , Coelhos , Camundongos , HIV-1/genética , Vacinas contra a AIDS/genética , RNA Mensageiro/genética
9.
Sci Adv ; 9(19): eadf3775, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163602

RESUMO

Intracellular deposition of α-synuclein and tau are hallmarks of synucleinopathies and tauopathies, respectively. Recently, several dye-based imaging probes with selectivity for tau aggregates have been developed, but suitable imaging biomarkers for synucleinopathies are still unavailable. Detection of both of these aggregates early in the disease process may allow for prophylactic therapies before functional impairments have manifested, highlighting the importance of developing specific imaging probes for these lesions. In contrast to the ß sheet dyes, single-domain antibodies, found in camelids and a few other species, are highly specific, and their small size allows better brain entry and distribution than whole antibodies. Here, we have developed such imaging ligands via phage display libraries derived from llamas immunized with α-synuclein and tau preparations, respectively. These probes allow noninvasive and specific in vivo imaging of α-synuclein versus tau pathology in mice, with the brain signal correlating strongly with lesion burden. These small antibody derivatives have great potential for in vivo diagnosis of these diseases.


Assuntos
Anticorpos de Domínio Único , Sinucleinopatias , Tauopatias , Camundongos , Animais , alfa-Sinucleína , Proteínas tau , Anticorpos , Corantes
10.
Part Part Syst Charact ; 39(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36186663

RESUMO

The HIV-1 envelope glycoprotein spike is the target of antibodies, and therefore represents the main viral antigen for antibody-based vaccine design. One of the challenges in HIV-1 vaccine development is finding efficient ways for the immune system to recognize and respond to HIV-1 without establishing an infection. Since HIV-1 enters the body at mucosal surfaces, induction of immune response at these sites is a preferred preventive approach. Nasal administration is a very effective route for mucosal immunization since it can stimulate mucosal immune responses both locally and distantly. In this paper, Luna develops a safe, short carbon nanotube (CNT)-based, needle-free delivery platform known as "CNTVac". The size of short CNT was controlled to possess HIV-1 particle-like morphology (100-200 nm) capable of efficiently delivering a broad range of antigens intranasally. PEG-Lipid served as the antigen conformation protector and mucosal barrier penetration enhancer (Schematic Figure) was localized between V1V2 antigens, which caused highly enhanced local IgA and systemic antibody IgG responses in mice and rabbits. The short CNT incorporated with PEG-Lipid could not only serve as efficient delivery system but also reduce the amount of lipid usage in order to balance the vaccine dosage in order to eliminate the potential adverse effect. These data suggest a promising platform technology for vaccine delivery.

11.
EBioMedicine ; 84: 104249, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36099813

RESUMO

BACKGROUND: Eleven tau immunoglobulin G (IgG) antibodies have entered clinical trials to treat tauopathies, including Alzheimer's disease, but it is unclear which IgG subclass/subtype has the ideal efficacy and safety profile. Only two subtypes, with or without effector function, have been examined in the clinic and not for the same tau antibody. The few preclinical studies on this topic have only compared two subtypes of one antibody each and have yielded conflicting results. METHODS: We selected two single domain antibodies (sdAbs) derived from a llama immunized with tau proteins and utilized them to generate an array of Fc-(sdAb)2 subclasses containing identical tau binding domains but differing Fc region. Unmodified sdAbs and their IgG subclasses were tested for efficacy in primary cultures and in vivo microdialysis using JNPL3 tauopathy mice. FINDINGS: Unmodified sdAbs were non-toxic, blocked tau toxicity and promoted tau clearance. However, the efficacy/safety profile of their Fc-(sdAb)2 subclasses varied greatly within and between sdAbs. For one of them, all its subtypes were non-toxic, only those with effector function cleared tau, and were more effective in vivo than unmodified sdAb. For the other sdAb, all its subtypes were toxic in tauopathy cultures but not in wild-type cells, suggesting that bivalent binding of its tau epitope stabilizes a toxic conformation of tau, with major implications for tau pathogenesis. Likewise, its subclasses were less effective than the unmodified sdAb in clearing tau in vivo. INTERPRETATION: These findings indicate that tau antibodies with effector function are safe and better at clearing pathological tau than effectorless antibodies, Furthermore, tau antibodies can provide a valuable insight into tau pathogenesis, and some may aggravate it. FUNDING: Funding for these studies was provided by the National Institute of Health (R01 AG032611, R01 NS077239, RF1 NS120488, R21 AG 069475, R21 AG 058282, T32AG052909), and the NYU Alzheimer's Disease Center Pilot Grant Program (via P30 AG008051).


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Epitopos , Imunoglobulina G , Camundongos , Tauopatias/metabolismo , Proteínas tau/metabolismo
12.
Front Immunol ; 13: 900080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059505

RESUMO

Developing a safe and effective malaria vaccine is critical to reducing the spread and resurgence of this deadly disease, especially in children. In recent years, vaccine technology has seen expanded development of subunit protein, peptide, and nucleic acid vaccines. This is due to their inherent safety, the ability to tailor their immune response, simple storage requirements, easier production, and lower expense compared to using attenuated and inactivated organism-based approaches. However, these new vaccine technologies generally have low efficacy. Subunit vaccines, due to their weak immunogenicity, often necessitate advanced delivery vectors and/or the use of adjuvants. A new area of vaccine development involves design of synthetic micro- and nano-particles and adjuvants that can stimulate immune cells directly through their physical and chemical properties. Further, the unique and complex life cycle of the Plasmodium organism, with multiple stages and varying epitopes/antigens presented by the parasite, is another challenge for malaria vaccine development. Targeting multistage antigens simultaneously is therefore critical for an effective malaria vaccine. Here, we rationally design a layer-by-layer (LbL) antigen delivery platform (we called LbL NP) specifically engineered for malaria vaccines. A biocompatible modified chitosan nanoparticle (trimethyl chitosan, TMC) was synthesized and utilized for LbL loading and release of multiple malaria antigens from pre-erythrocytic and erythrocytic stages. LbL NP served as antigen/protein delivery vehicles and were demonstrated to induce the highest Plasmodium falciparum Circumsporozoite Protein (PfCSP) specific T-cell responses in mice studies as compared to multiple controls. From immunogenicity studies, it was concluded that two doses of intramuscular injection with a longer interval (4 weeks) than traditional malaria vaccine candidate dosing would be the vaccination potential for LbL NP vaccine candidates. Furthermore, in PfCSP/Py parasite challenge studies we demonstrated protective efficacy using LbL NP. These LbL NP provided a significant adjuvant effect since they may induce innate immune response that led to a potent adaptive immunity to mediate non-specific anti-malarial effect. Most importantly, the delivery of CSP full-length protein stimulated long-lasting protective immune responses even after the booster immunization 4 weeks later in mice.


Assuntos
Quitosana , Vacinas Antimaláricas , Nanopartículas , Parasitos , Animais , Antígenos de Protozoários/metabolismo , Quitosana/metabolismo , Camundongos , Plasmodium falciparum
13.
Biochem Eng J ; 187: 108596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36034180

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since December 2019, and with it, a push for innovations in rapid testing and neutralizing antibody treatments in an effort to solve the spread and fatality of the disease. One such solution to both of these prevailing issues is targeting the interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. Structural studies have shown that the N-terminal alpha-helix comprised of the first 23 residues of ACE2 plays an important role in this interaction. Where it is typical to design a binding domain to fit a target, we have engineered a protein that relies on multivalency rather than the sensitivity of a monomeric ligand to provide avidity to its target by fusing the N-terminal helix of ACE2 to the coiled-coil domain of the cartilage oligomeric matrix protein. The resulting ACE-MAP is able to bind to the SARS-CoV-2 RBD with improved binding affinity, is expressible in E. coli, and is thermally stable and relatively small (62 kDa). These properties suggest ACE-MAP and the MAP scaffold to be a promising route towards developing future diagnostics and therapeutics to SARS-CoV-2.

14.
Front Surg ; 9: 859426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034350

RESUMO

Purpose: This clinical research aims to assess the safety and efficacy of a combination of fusiform capsulectomy of the posterior capsule and percutaneous flexion tendon release in the treatment of a fused knee with severe flexion contracture during total knee arthroplasty (TKA). Methods: A retrospective analysis was performed in three patients (six knees) who had preoperative severe bony fused flexion contracture (>80°) prior to TKA and received a combination of fusiform capsulectomy of posterior capsule and percutaneous flexion tendon release during TKA between January 2016 and December 2019. The range of motion (ROM), knee functional score, postoperative complications, and radiographic results were evaluated. Result: Three patients (six knees) were enrolled in this study. The mean duration of follow-up was 42.83 ± 15.77 months. The postoperative knee ROM was 100.0 (76.0, 102.75) (p < 0.01). The knee society score (KSS) clinical score increased from a preoperative 30.0 (25.0, 36.0) to a postoperative 64.0 (65.0, 78.0) (p < 0.01), and the KSS function score increased from a preoperative 0.0 (0.0, 30.0) to a postoperative 55.0 (40.0, 55.0) (p < 0.01). No implant loosening, infection, neurovascular complications, or revision were recorded in the cohort until the last follow-up. Conclusion: The technique of a combination of fusiform capsulectomy of the posterior capsule and percutaneous flexion tendon release is an effective and safe method during primary TKA for a fused knee with severe flexion contracture.

15.
Orthop Surg ; 14(8): 1912-1917, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794826

RESUMO

BACKGROUND: Robotic-assisted technology may be useful in hip revision cases with acetabular defects. However, data on the use of robotic-assisted technology for such complex diseases is lacking. CASE PRESENTATION: This case study described the adoption of MAKO robotic-assisted treatment of revision total hip arthroplasty (THA) combined with severe acetabular defect (Paprosky type IIIB). Robotic-assisted technology accurately achieved preoperative planning; the acetabular component and augment were placed in the original position and angle as planned. Robotic-assisted acetabular reaming was successful in a single pass, preserving the remaining acetabular bone mass very well with no procedure-related complications. The Harris Hip Score (HHS) at 6 months postoperatively was 84 and the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index was 24. CONCLUSION: Robotic-assisted technology can help in the accurate reconstruction of acetabular defect in complex hip revision surgery.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Procedimentos Cirúrgicos Robóticos , Acetábulo/cirurgia , Humanos , Falha de Prótese , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
16.
ACS Nano ; 16(3): 4517-4527, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35245030

RESUMO

Solar-driven conversion of CO2 is considered an efficient way to tackle the energy and environmental crisis. However, the photocatalytic performance is severely restricted due to the insufficient accessible active sites and inhibited electron transfer efficiency. This work demonstrates a general in situ topological transformation strategy for the integration of uniform Co-based species to fabricate a series of multishelled superstructures (MSSs) for CO2 photocatalytic conversion. Thorough characterizations reveal the obtained MSSs feature ultrathin Co-based nanosheet assembled polyhedral structures with tunable shell numbers, inner cavity sizes, and compositions. The superstructures increase the spatial density of Co-based active sites while maintaining their high accessibility. Further, the ultrathin nanosheets also facilitate the transfer of photogenerated electrons. As a result, the ZnCo bimetallic hydroxide featuring an ultrathin nanosheet assembled quadruple-shell hollow structure (ZnCo-OH QUNH) exhibits high photocatalytic efficiency toward CO2 reduction with a CO evolution rate of 134.2 µmol h-1 and an apparent quantum yield of 6.76% at 450 nm. The quasi in situ spectra and theoretical calculations disclose that Co sites in ZnCo-OH QUNH act as highly active centers to stabilize the COOH* intermediate, while Zn species play the role of adsorption sites for the [Ru(bpy)3]2+ molecules.

17.
Nat Commun ; 13(1): 903, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173151

RESUMO

V2p and V2i antibodies (Abs) that are specific for epitopes in the V1V2 region of the HIV gp120 envelope (Env) do not effectively neutralize HIV but mediate Fc-dependent anti-viral activities that have been correlated with protection from, or control of HIV, SIV and SHIV infections. Here, we describe a novel molecular toolbox that allows the discrimination of antigenically and functionally distinct polyclonal V2 Ab responses. We identify different patterns of V2 Ab induction by SHIV infection and three separate vaccine regimens that aid in fine-tuning an optimized immunization protocol for inducing V2p and V2i Abs. We observe no, or weak and sporadic V2p and V2i Abs in non-vaccinated SHIV-infected NHPs, but strong V2p and/or V2i Ab responses after immunization with a V2-targeting vaccine protocol. The V2-focused vaccination is superior to both natural infection and to immunization with whole Env constructs for inducing functional V2p- and V2i-specific responses. Strikingly, levels of V2-directed Abs correlate inversely with Abs specific for peptides of V3 and C5. These data demonstrate that a V1V2-targeting vaccine has advantages over the imprecise targeting of SIV/SHIV infections and of whole Env-based immunization regimens for inducing a more focused functional V2p- and V2i-specific Ab response.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Feminino , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinação
18.
Int Orthop ; 46(4): 769-777, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997288

RESUMO

AIMS: Total hip arthroplasty (THA) in patients with hip-dislocation dysplasia remains challenging. This study aims to evaluate whether these patients may benefit from robotic-assisted techniques. METHODS: We reviewed 135 THAs (108 conventional THAs and 27 robotic-assisted THAs) for Crowe type III or IV from January 2017 to August 2019 in our institution. Robotic-assisted THAs were matched with conventional THAs at a 1:1 ratio (27 hips each group) using propensity score matching. The accuracy of cup positioning and clinical outcomes were compared between groups. RESULTS: The inclination of the cup for conventional THAs and robotic THAs was 42.1 ± 5.7 and 41.3 ± 4.6 (p = 0.574), respectively. The anteversion of the cup for conventional THAs was significantly greater than that of robotic THAs (29.5 ± 8.1 and 18.0 ± 4.6; p < 0.001), respectively. The ratio of the acetabular cup in the Lewinnek safe zone was 37% (10/27) in conventional THAs and 96.3% (26/27) in robotic THAs (p < 0.001). Robotic THAs did not achieve better leg length discrepancy than that of conventional THAs (- 0.4 ± 10.9 mm vs. 0.4 ± 8.8 mm, p = 0.774). There was no difference in Harris Hip Score and WOMAC Osteoarthritis index between groups at the 2-year follow-up. No dislocation occurred in all cases at the final follow-up. CONCLUSION: Robotic-assisted THA for patients with high dislocation improves the accuracy of the implantation of the acetabular component with respect to safe zone.


Assuntos
Artroplastia de Quadril , Luxação Congênita de Quadril , Luxação do Quadril , Prótese de Quadril , Luxações Articulares , Procedimentos Cirúrgicos Robóticos , Acetábulo/cirurgia , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/métodos , Computadores , Luxação do Quadril/cirurgia , Luxação Congênita de Quadril/cirurgia , Humanos , Luxações Articulares/cirurgia , Pontuação de Propensão , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos
19.
Nat Commun ; 12(1): 6464, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753944

RESUMO

Identification of vulnerable sites defined by broadly neutralizing antibodies (bNAbs) on HIV-1 envelope (Env) is crucial for vaccine design, and we present here a vulnerable site defined by bNAb M4008_N1, which neutralizes about 40% of a tier-2 virus panel. A 3.2 Å resolution cryo-EM structure of M4008_N1 in complex with BG505 DS-SOSIP reveals a large, shallow protein epitope surface centered at the V3 crown of gp120 and surrounded by key glycans. M4008_N1 interacts with gp120 primarily through its hammerhead CDR H3 to form a ß-sheet interaction with the V3 crown hairpin. This makes M4008_N1 compatible with the closed conformation of the prefusion Env trimer, and thus distinct from other known V3 crown mAbs. This mode of bNAb approaching the immunogenic V3 crown in the native Env trimer suggests a strategy for immunogen design targeting this site of vulnerability.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , HIV-1/metabolismo , Vacinas contra a AIDS/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Humanos
20.
ACS Appl Mater Interfaces ; 13(38): 45609-45618, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542276

RESUMO

Visible-light-driven photocatalytic CO2 reduction is considered an appealing strategy to mitigate the energy crisis and environmental issues, whereas the reactivity is limited due to the difficulties in activation of inert CO2 molecule and efficient transportation of photoinduced carriers. Herein, we report the design of novel Fe doped CoP hierarchical double-shelled nanocages (Fe-CoP HDSNC) via a MOF-templated approach for highly efficient visible-light-driven CO2 reduction. The unique hierarchical double-shelled hollow architectures can greatly shorten the charge transfer distances and also expose abundant reactive sites. Moreover, Fe atoms doping is able to reduce the CO2 activation energy barrier through stabilizing the *COOH intermediates and promote the CO desorption by destabilizing the CO* adduct. As expected, the Fe-CoP HDSNC achieves an unprecedented catalytic efficiency in visible-light-driven CO2 reduction with an up to 3.25% apparent quantum yield and 90.3% CO selectivity, superior to most of the state-of-the-art photocatalysts under comparable conditions. More importantly, the Fe-CoP HDSNC is also highly effective under diluted CO2 atmosphere, suggesting the practicability of the present photocatalytic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...